Выражения обыкновенные дроби преобразуем. Сложные выражения с дробями. Порядок действий. Изменение знаков перед дробью, а также в ее числителе и знаменателе

В школе VIII вида учащиеся знакомятся со следующими преоб­разованиями дробей: выражением дроби в более крупных долях (6-й класс), выражением неправильной дроби целым или смешан­ным числом (6-й класс), выражением дробей в одинаковых долях (7-й класс), выражением смешанного числа неправильной дробью (7-й класс).


Выражение неправильной дроби целым или смешанным числом

Изучение данного материала следует начать с задания: взять 2 равных круга и каждый из них разделить на 4 равные доли, подсчи­тать количество четвертых долей (рис. 25). Далее предлагается записать это количество дробью . Затем четвертые доли при-

кладываются друг к другу и ученики убеждаются, что получился целый круг. Следовательно,К четырем четвертям добавляет-

ся последовательно еще по и ученики записывают:

Учитель обращает внимание учащихся на то, что во всех рас­смотренных случаях они брали неправильную дробь, а в результа­те преобразования получали или целое, или смешанное число, т. е. выражали неправильную дробь целым или смешанным чис­лом. Далее надо стремиться к тому, чтобы учащиеся самостоятель­но определили, каким арифметическим действием это преобразова­ние можно выполнить. Яркими примерами, приводящими к ответу на вопрос, являются: Вывод: чтобы

выразить неправильную дробь целым или смешанным числом, нужно числитель дроби разделить на знаменатель, частное запи­сать целым числом, остаток записать в числитель, а знаменатель оставить тот же. Так как правило громоздкое, совсем не обяза­тельно, чтобы учащиеся заучивали его наизусть. Они должны уметь последовательно рассказать о действиях при выполнении данного преобразования.

Перед тем как познакомить учащихся с выражением непра­вильной дроби целым или смешанным числом, целесообразно по­вторить с ними деление целого числа на целое с остатком.

Закреплению нового для учащихся преобразования способству­ет решение задач жизненно-практического характера, например:

«В вазе лежит девять четвертых долей апельсина. Сколько целых апельсинов можно сложить из этих долей? Сколько четвер­тых долей останется?»

Выражение целого и смешанного числа неправильной дробью

Знакомству учащихся с этим новым преобразованием должно предшествовать решение задач, например:

«2 равных по длине куска ткани, имеющих форму квадрата, разрезали на 4 равные части. Из каждой такой части сшили платок. Сколько получилось платков?» .

Далее учитель предлагает учащимся выполнитьтакое задание: «Возьмите целый круг и еще половину круга, равного по разме­ру первому. Разрежьте целый круг пополам. Сколько всего поло­винполучилось? Запишите: было круга, стало круга.

Таким образом, опираясь на наглядно-практическую основу, рассматриваем еще ряд примеров. В рассматриваемых примерах учащимся предлагается сравнить исходное число (смешанное или целое) и число, которое получилось после преобразования (непра­вильная дробь).

Чтобы познакомить учеников с правилом выражения целого и смешанного числа неправильной дробью, надо привлечь их внима­ние к сравнению знаменателей смешанного числа и неправильной дроби, а также к тому, как получается числитель, например:

будет 15/4. В итоге формулируется правило: чтобы смешанное число выразить неправильной дробью, надо знаменатель умножить на целое число, прибавить к произведению числитель и сумму запи­сать числителем, а знаменатель оставить без изменения.



Вначале нужно упражнять учащихся в выражении неправиль­ной дробью единицы, затем любого другого целого числа с указа­нием знаменателя, а уже затем смешанного числа-


Основное свойство дроби 1

Понятие неизменяемости дроби при одновременном увеличении или уменьшении ее членов, т. е. числителя и знаменателя, усваи­вается учащимися школы VIII вида с большим трудом. Это поня­тие необходимо вводить на наглядном и дидактическом материале, причем важно, чтобы учащиеся не только наблюдали за деятель­ностью учителя, но и сами активно работали с дидактическим материалом и на основе наблюдений и практической деятельности приходили к определенным выводам, обобщению.

Например, учитель берет целую репу, делит ее на 2 равные части и спрашивает: «Что получили при делении целой репы пополам? (2 половины.) Покажите репы. Разрежем (разделим) половину репы еще на 2 равные части. Что получим? Запишем: Сравним числители и знаменатели этих дробей. Во сколько

раз увеличился числитель? Во сколько раз увеличился знамена­тель? Во сколько раз увеличились и числитель, и знаменатель? Изменилась ли дробь? Почему не изменилась? Какими стали доли: крупнее или мельче? Увеличилось или уменьшилось число долей?»

Затем все учащиеся делят круг на 2 равные части, каждую половину делят еще на 2 равные части, каждую четверть еще на 2 равные части и т. д. и записывают: и т. д. Потом

устанавливают, во сколько раз увеличился числитель и знамена­тель дроби, изменилась ли дробь. Затем чертят отрезок и делят его последовательно на 3, 6, 12 равных частей и записывают:

При сравнении дробей обнаруживается, что

числитель и знаменатель дроби увеличивается в одно и то же число раз, дробь от этого не изменяется.

После рассмотрения ряда примеров следует предложить уча­щимся ответить на вопрос: «Изменится ли дробь, если числитель

Некоторые знания по теме «Обыкновенные дроби» исключаются из учебных программ по математике в коррекционных школах VIII вида, но они сообщаются учащимся в школах для детей с задержкой психического развития, в классах выравнивания для детей, испытывающих трудности в обучении математике. В данном учебнике параграфы, где дается методика изучения этого материала, обозначены звездочкой (*).


и знаменатель дроби умножить на одно и то же число (увеличить в одно и то же число раз)?» Кроме того, надо попросить учащихся самим привести примеры.

Аналогичные примеры приводятся при рассмотрении уменьше­ния числителя и знаменателя в одно и то же число раз (числитель и знаменатель делятся на одно то же число). Например, круг делят на 8 равных частей, берут 4 восьмые доли круга,

укрупнив доли, берут четвертые, их будет 2. Укрупнив доли, берут вторые. Их будет Сравнивают последовательно

числители и знаменатели этих дробей, отвечая на вопросы: «Во сколько раз уменьшается числитель и знаменатель? Изменится ли дробь?*.

Хорошим пособием являются полосы, разделенные на 12, 6, 3 равные части (рис. 26).

На основании рассмотренных примеров учащиеся могут сде­лать вывод: дробь не изменится, если числитель и знаменатель дроби разделить на одно и то же число (уменьшить в одно и то же число раз). Затем дается обобщенный вывод - основное свойство дроби: дробь не изме­нится, если числитель и знаменатель дроби увеличить или умень­шить в одно и то же число раз.

Сокращение дробей

Предварительно необходимо готовить учащихся к этому преоб­разованию дробей. Как известно, сократить дробь - это значит числитель и знаменатель дроби разделить на одно и то же число. Но делителем должно быть такое число, которое дает в ответе несократимую дробь.

За месяц-полтора до ознакомления учащихся с сокращением дробей проводится подготовительная работа - предлагается из таблицы умножения назвать два ответа, которые делятся на одно и то же число. Например: «Назовите два числа, которые делятся на 4». (Сначала учащиеся смотрят 1 в таблицу, а потом называют эти числа по памяти.) Они называют и числа, и результаты их деления на 4. Затем учитель предлагает ученикам для дроби, 3


например подобрать делитель - для числителя и знаменателя (опорой для выполнения такого действия является таблица умно­жения).

какую таблицу надо посмотреть? На какое число можно разделить 5 и 15?) Выясняется, что при делении числителя и знаменателя дроби на одно и то же число величина дроби не изменилась (это можно показать на полоске, отрезке, круге), только стали круп­нее доли:Вид дроби стал проще. Учащиеся подводятся к выводу правиласокращения дробей.

Учащимся школы VIII вида часто оказывается трудно подо­брать наибольшее число, на которое делится и числитель, и знаменатель дроби. Поэтому нередко наблюдаются ошибки такого характера, как 4/12=2/6 т. е. ученик не нашел наибольший общий

делитель для чисел4 и 12. Поэтому на первых порах можно разрешить постепенное деление, т. е. но при этом спрашивать, на какое число разделили числитель и знаменатель дроби сначала, на какое число потом и затем на какое число сразу можно было разделить числитель и знаменатель дроби. Такие вопросы помогают учащимся постепенно отыскивать наибольший общий делитель числителя и знаменателя дроби.

Приведение дробей к наименьшему общему знаменателю*

Приведение дробей к наименьшему общему знаменателю нужно рассматривать не как самоцель, а как преобразование, необходимое для сравнения дробей, а затем и для выполнения действий сложения и вычитания дробей с разными знаменателями.

Учащиеся уже знакомы со сравнением дробей с одинаковыми числителями, но разными знаменателями и с одинаковыми знамена­телями, но разными числителями. Однако они еще не умеют сравни­вать дроби с разными числителями и разными знаменателями.

Перед тем как объяснять учащимся смысл нового преобразова­ния, необходимо повторить пройденный материал, выполнив, на­пример, такие задания:

Сравнить дроби 2/5,2/7,2/3 Сказать правило сравнения дробей с

одинаковыми числителями.


Сравнить дроби Сказать правило сравнения дробей

с одинаковыми знаменателями.

Сравнить дроби Эти дроби учащиеся сравнить затрудня-

ются, так как у них разные числители и разные знаменатели. Чтобы сравнить эти дроби, нужно сделать равными числители или знамена­тели этих дробей. Обычно в одинаковых долях выражают знаменате­ли, т. е. приводят дроби к наименьшему общему знаменателю.

Учащихся необходимо познакомить со способом выражения дробей в одинаковых долях.

Сначала рассматриваются дроби с разными знаменателями, но такие, у которых знаменатель одной дроби делится без остатка на знаменатель другой дроби и, следовательно, может являться и знаменателем другой дроби.

Например, у дробей знаменателями являются числа 8 и 2.

Чтобы выразить эти дроби в одинаковых долях, учитель предлага­ет меньший знаменатель умножать последовательно на числа 2, 3, 4 и т. д. и делать это до тех пор, пока не получится результат, равный знаменателю первой дроби. Например, 2 умножим на 2, получим 4. Знаменатели опять у двух дробей разные. Далее 2 умножим на 3, получим 6. Число 6 также не подходит. 2 умножим на 4, получим 8. В этом случае знаменатели стали одинаковыми. Чтобы дробь не изменилась, надо и числитель дроби умно­жить на 4 (на основании основного свойства дроби). Получим дробь Теперь дроби выражены в одинаковых долях. Их

легко и сравнивать, и выполнять с ними действия.

Найти число, на которое нужно умножить меньший знамена­тель одной из дробей, можно делением большего знаменателя на меньший. Например, если 8 разделить на 2, то получим число 4. На это число нужно умножить и знаменатель, и числитель дроби. Значит, чтобы выразить в одинаковых долях несколько дробей, нужно больший знаменатель разделить на меньший, частное умно­жить на знаменатель и числитель дроби с меньшими знаменате­лями. Например, даны дроби Чтобы эти дроби привести

к наименьшему общему знаменателю, нужно 12:6=2, 2x6=12, 306


2x1=2. Дробь примет вид . Затем 12:3=4, 4x3=12, 4x2=8. Дробь примет вид Следовательно, дроби примут соответственно вид т. е. окажутся выражен-

ными в одинаковых долях.

Проводятся упражнения, которые позволяют сформировать умения приведения дробей к общему наименьшему знаменателю.

Например, надо выразить в одинаковых долях дроби

Чтобы учащиеся не забывали то частное, которое получается от деления большего знаменателя на меньший, целесообразно.его

записывать над дробью с меньшим знаменателем. Например, и

Затем рассматриваются такие дроби, у которых больший зна­менатель не делится на меньший и, следовательно, не является

общим для данных дробей. Например, Знаменатель 8 не

делится на 6. В этом случае больший знаменатель 8 будем после­довательно умножать на числа числового ряда, начиная с 2, до тех пор, пока не получим число, которое делится без остатка на оба знаменателя 8 и 6. Чтобы дроби остались равными данным, числители нужно соответственно умножить на те же числа. На-

3 5 пример, чтобы дроби тг и * были выражены в одинаковых долях,

больший знаменатель 8 умножаем на 2(8x2=16). 16 не делится на 6, значит, 8 умножаем на следующее число 3(8x3=24). 24 делится на 6 и на 8, значит, 24 - общий знаменатель для данных дробей. Но чтобы дроби остались равными, числители их надо увеличить во столько же раз, во сколько раз увеличили знамена­тели, 8 увеличили в 3 раза, значит, и числитель этой дроби 3 увеличим в 3 раза.

Дробь примет вид Знаменатель 6 увеличили в 4 раза. Соответственно числитель 5 дроби надо увеличить в 4 раза. Дроби примут соответственно вид


Таким образом, подводим учащихся к общему выводу (правилу) и знакомим их с алгоритмом выражения дробей в одинаковых долях. Например, даны две дроби ¾ и 5/7

1. Находим наименьший общий знаменатель: 7x2=14, 7x3=21,
7x4=28. 28 делится на 4 и на 7. 28 - наименьший общий знаме­
натель для дробей

2. Находим дополнительные множители: 28:4=7,

3. Запишем их над дробями:

4. Числители дробей умножим на дополнительные множители:
3x7=21, 5x4=20.

Получим дроби с одинаковыми знаменателями .Значит,

дроби мы привели к общему наименьшему знаменателю.

Опыт показывает, что ознакомление учащихся с преобразованием дробей целесообразно проводить перед изучением различных ариф­метических действий с дробями. Например, сокращение дробей или замену неправильной дроби целым или смешанным числом целесооб­разно дать перед изучением сложения и вычитания дробей с одина­ковыми знаменателями, так как в полученной сумме или разности

Придется делать либоодно, либо оба преобразования.

Приведение дроби к наименьшему общему знаменателю лучше изучать с учащимися перед темой «Сложение и вычитание дробей с разными знаменателями», а замену смешанного числа неправильной дробью - перед темой «Умножение и деление дро­бей на целое число».

Сложение и вычитание обыкновенных дробей

1. Сложение и вычитание дробей с одинаковыми знаме­нателями.

Исследование, проведенное Алышевой Т.В. 1 , свидетельствует о целесообразности при изучении действий сложения и вычитания обыкновенных дробей с одинаковыми знаменателями использовать аналогию со сложением и вычитанием уже известных учащимся


чисел, полученных в результате измерения величин, и проводить изучение действий дедуктивным методом, т. е. «от общего к част­ному».

Сначала повторяется сложение и вычитание чисел с наимено­ваниями мер стоимости, длины. Например, 8 р. 20 к. ± 4 р. 15 к. При выполнении устного сложения и вычитания нужно склады­вать (вычитать) сначала рубли, а потом копейки.

3 м 45 см ± 2 м 24 см - сначала складываются (вычитаются) метры, а потом сантиметры.

При сложении и вычитании дробей рассматривается общий случай: выполнение этих действий со смешанными дррбями (зна­менатели одинаковые): В этом случае надо: «Сложить (вычесть) целые числа, затем числители, а знаменатель остается тем же». Это общее правило распространяется на все случаи сложения и вычитания дробей. Постепенно вводятся частные слу­чаи: сложение смешанного числа с дробью, потом смешанного числа с целым. После этого рассматри­ваются более трудные случаивычитания: 1) из смешанного числа дроби: 2) из смешанного числа целого:

После усвоения этих достаточно простых случаев вычитания учащиеся знакомятся с более трудными случаями, когда требуется преобразование уменьшаемого: вычитание из одной целой едини­цы или из нескольких единиц, например:

В первом случае единицу нужно представить в виде дроби со знаменателем, равным знаменателю вычитаемого. Во втором слу­чае из целого числа берем единицу и также ее записываем в виде неправильной дроби со знаменателем вычитаемого, получаем в уменьшаемом смешанное число. Вычитание выполняется по обще­му правилу.

Наконец рассматривается наиболее трудный случай вычитания: из смешанного числа, причем числитель дробной части меньше числителя в вычитаемом. В этом случае надо уменьшаемое изменить так, чтобы можно было применить общее правило, т. е. в уменьшаемом занять из целого одну единицу и раздробить


в пятые доли, получим да еще , получится пример

примет такой вид:к его решению уже можно применить

общее правило.

Использование дедуктивного метода обучения сложению и вычи­танию дробей будет способствовать развитию у учащихся умения обобщать, сравнивать, дифференцировать, включать отдельные слу­чаи вычислений в общую систему знаний о действиях с дробями.

Учение без принуждения

(Путеводитель в увлекательный мир математики)

Математику уже затем учить надо, что она ум в порядок приводит. (М.В. Ломоносов)

Так как же учить математику?

Этот вопрос интересует многих.

Первым делом нужно ликвидировать пробелы из прошлого. Если вы пропустили (не поняли, принципиально не изучали, и т.д.) какую-нибудь тему, рано или поздно вы обязательно наступите на эти грабли. С классическим результатом... Уж так устроена математика.

Независимо от того, изучаете вы новую тему, или повторяете старую - освойте математические определения и термины! Обратите внимание, я не говорю – «выучите», а говорю «освойте». Это разные вещи. Вы должны понимать, к примеру, что такое знаменатель, дискриминант, или арксинус на простом, даже примитивном уровне. Что это такое, зачем это нужно и как с этим обращаться. Жить станет легче.

Если я вас спрошу, как пользоваться устройством перехода через плотные ограниченные среды, вам будет неуютно отвечать, верно? А если вы понимаете, что это самое устройство - обычная дверь? Правда, как-то веселее.

И, конечно, нужно решать. Если не умеете решать - ничего страшного. Нужно пытаться решать, пробовать. Все когда-то не умели. Но кто пытался и пробовал, пусть и неправильно, с ошибками - тот сейчас умеет решать. А кто не пробовал, не учился - тот так и не научился.

Вот вам три составляющие ответа на вопрос: "Как учить математику?" Ликвидировать пробелы, освоить термины на понятном уровне и осмысленно решать задания.

Если вам математика представляется дебрями каких-то правил, формул, выражений, в которых невозможно ориентироваться, то я вас утешу. Есть там тропы и путеводные звезды! Обживетесь, попривыкнете, еще и любоваться этими дебрями начнете…

Математика школьного курса не решает сложные примеры, так как не умеет. Она хорошо может решить что-нибудь вида 5х = 10, квадратное уравнение через дискриминант, ну и такое же простое из тригонометрии, логарифмов и т.д. И вся мощь математики направлена на упрощение сложных выражений. Именно для этого нужны правила и формулы различных преобразований. Они позволяют записывать исходное выражение в другом, удобном нам виде, не меняя его сущности.



«Математика – это искусство называть разные вещи одним и тем же именем». (А. Пуанкаре)

Например, 8 = 6 + 2 = 2 = = log 6561 = 32: 4. Это всё одно и то же число 8! Только записано в самых разных видах. Какой вид выбрать - решать нам! Сообразуясь с заданием и здравым смыслом.

Главной путеводной звездой в математике является умение преобразовывать выражения. Практически любое решение начинается с преобразования исходного выражения. С помощью правил и формул, которых вовсе не такое безумное количество, как вам кажется.

Мы часто говорим «Все формулы работают слева – направо и справа – налево». Скажем, (a + b) почти каждый распишет как a + 2ab + b . Но не каждый (к сожалению) сообразит, что x + 2x + 1 можно записать, как (x + 1) . А вот это надо уметь! Формулы нужно знать в лицо! Уметь опознавать их в зашифрованных хитрыми преподавателями выражениях, выявлять части формул, доводить, при необходимости, до полных.

Преобразования выражений – вещь, поначалу, хлопотная. Требует труда. На стартовом этапе нужно проверять, где можно, правильность преобразования обратным преобразованием. Разложили на множители – перемножьте обратно и приведите подобные. Получилось исходное выражение – ура! Нашли корни уравнения – подставьте в исходное выражение. Посмотрите, что получилось. И так далее.

Итак, я приглашаю вас в удивительный мир математики. А начнём наш путь со знакомства с дробями, так это, пожалуй, самое уязвимое место большинства школьников.

В добрый путь!

Занятие 1.

Виды дробей. Преобразования.

Кто знает дроби, тот силён, тот в математике отважен!

Дроби бывают трёх видов.

1. Обыкновенные дроби , например: , , , .

Иногда вместо горизонтальной черты ставят наклонную черту: 1/2, 3/7, 19/5. Черта, и горизонтальная (винкулиум), и наклонная (солидус) означает одну и ту же операцию: деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо черты вполне можно поставить знак деления - две точки. 1/2 = 1: 2.

Когда деление возможно нацело, это надо делать. Так, вместо дроби 32/8 гораздо приятнее написать число 4. Т.е. 32 просто поделить на 8. 32/8 = 32: 8 = 4. Я уж не говорю про дробь 4/1, которая тоже равна 4. А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например: 0,5; 3,28; 0,543; 23,32.

3. Смешанные числа , например: , , , .

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задаче и зависните... На пустом месте. Но мы-то вспомним эту процедуру!

Наиболее универсальны обыкновенные дроби. С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буквы, это ничего не меняет. В том смысле, что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

Итак, вперёд! Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

А оно нам надо, все эти превращения? – спросите вы. Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей. Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходиться сокращать не дробь вида 5/10, а дробное рациональное выражение.

Обычно ученик не задумывается над делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение: .

Что мы делаем? Зачеркиваем множитель а сверху и степень снизу! Получаем: .

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на множитель а. Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть букву а в выражении и получить снова . Что будет категорически неверно: непростительная ошибка. Потому что здесь весь числитель на а уже не делится ! Эту дробь сократить нельзя.

При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру, 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и, наоборот, без калькулятора! Это важно на ЦТ, правда?

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это нуль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обыкновенную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Например, 0,3. Это три десятых, т.е. 3/10.

А если целых - не нуль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную.

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обыкновенная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в результате решения получилось 1/2? А ответ нужно записать десятичной…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель на 5. Но, тогда и числитель надо умножить тоже на 5. Получим 1/2 = 0,5. Вот и всё.

Однако, знаменатели могут быть разными. Например, дробь 3/16. Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и при делении уголком мы получим 0,3333333... Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную!

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать пятиклассника и спросить у него. Но не всегда пятиклассник окажется рядом... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задаче вы с ужасом увидели число:

Спокойно, без паники рассуждаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем: числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Легко? Тогда закрепите успех! Переведите эти смешанные числа , , в обыкновенные дроби. У вас должно получиться 10/3, 23/10 и 21/4.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать. Ну а если написано, к примеру, 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам!

Если в задании сплошь десятичные дроби, но гм... страшные какие-то, перейдите к обыкновенным, попробуйте! Может, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби? 0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. Ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги нашего занятия.

1. Дроби бывают трёх видов: обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Лучше написать две лишние строчки в черновике, чем ошибиться при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

А теперь попробуйте применить теорию на практике.

Итак, решаем в режиме экзамена! Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний пример. И только потом смотрим ответы.

Решили? Ищем ответы, которые совпадают с вашими. Ответы записаны в беспорядке, подальше от соблазна, так сказать...

0; 17/22; 3; 1; 3/4; 14; -5/4; 17/12; 1/3; 5; 2/5; 25.

А теперь делаем выводы. Если всё получилось - рада за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет... Терпение и труд всё перетрут.

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.


Материал этой статьи представляет собой общий взгляд на преобразование выражений, содержащих дроби. Здесь мы рассмотрим основные преобразования, которые характерны для выражений с дробями.

Навигация по странице.

Выражения с дробями и дробные выражения

Для начала проясним, с преобразованием выражений какого вида мы собрались разбираться.

В заголовке статьи фигурирует говорящее за себя словосочетание «выражения с дробями ». То есть, ниже речь пойдет о преобразовании числовых выражений и выражений с переменными, в записи которых присутствует хотя бы одна дробь .

Сразу заметим, что после выхода в свет статьи «преобразование дробей: общий взгляд » нам уже не интересны отдельные дроби. Таким образом, дальше мы будем рассматривать суммы, разности, произведения, частные и более сложные выражения с корнями, степенями, логарифмами, объединяет которые лишь наличие хотя бы одной дроби.

И еще оговоримся про дробные выражения . Это не то же самое, что выражения с дробями. Выражения с дробями – более общее понятие. Не каждое выражение с дробями есть дробное выражение. Например, выражение не является дробным выражением, хотя и содержит дробь, это целое рациональное выражение . Так что не стоит называть выражение с дробями дробным выражением, не будучи полностью уверенным, что оно является таковым.

Основные тождественные преобразования выражений с дробями

Пример.

Упростите выражение .

Решение.

В данном случае можно раскрыть скобки , что даст выражение , в котором присутствуют подобные слагаемые и , а также −3 и 3 . После их приведения получим дробь .

Покажем краткую форму записи решения:

Ответ:

.

Работа с отдельными дробями

Выражения, о преобразовании которых мы говорим, отличаются от других выражений главным образом наличием дробей. А наличие дробей требует инструментов для работы с ними. В этом пункте мы обсудим преобразование отдельных дробей, входящих в запись данного выражения, а в следующем пункте перейдем к выполнению действий с дробями, составляющими исходное выражение.

С любой дробью, которая является составной частью исходного выражения, можно выполнять любое из преобразований, обозначенных в статье преобразование дробей . То есть, можно взять отдельную дробь, поработать с ее числителем и знаменателем, сократить ее, привести к новому знаменателю и т.д. Понятно, что при этом преобразовании выбранная дробь заменится тождественно равной ей дробью, а исходное выражение – тождественно равным ему выражением. Давайте рассмотрим пример.

Пример.

Преобразовать выражение с дробью к более простому виду.

Решение.

Преобразование начнем с того, что поработаем с дробью . Для начала раскроем скобки и приведем подобные слагаемые в числителе дроби: . Теперь напрашивается вынесение за скобки общего множителя x в числителе и последующее сокращение алгебраической дроби : . Остается лишь подставить полученный результат вместо дроби в исходное выражение, что дает .

Ответ:

.

Выполнение действий с дробями

Частью процесса преобразования выражений с дробями часто является выполнение действий с дробями . Они проводятся в соответствии с принятым порядком выполнения действий. Также стоит иметь в виду, что любое число или выражение всегда можно представить в виде дроби со знаменателем 1 .

Пример.

Упростите выражение .

Решение.

К решению поставленной задачи можно подходить с разных сторон. Мы в контексте разбираемой темы пойдем путем выполнения действий с дробями. Начнем с умножения дробей:

Теперь произведение запишем в виде дроби со знаменателем 1 , после чего проведем вычитание дробей:

При желании и необходимости можно еще освободиться от иррациональности в знаменателе , на чем можно закончить преобразования.

Ответ:

Применение свойств корней, степеней, логарифмов и т.п.

Класс выражений с дробями очень широк. Такие выражения помимо собственно дробей, могут содержать корни, степени с различными показателями, модули, логарифмы, тригонометрические функции и т.п. Естественно, при их преобразовании применяются соответствующие свойства.

Применимо к дробям, стоит выделить свойство корня из дроби , свойство дроби в степени , свойство модуля частного и свойство логарифма разности .

Для наглядности приведем несколько примеров. Например, в выражении может быть полезно на базе свойств степени первую дробь заменить степенью , что в дальнейшем позволяет представить выражение в виде квадрата разности. При преобразовании логарифмического выражения можно логарифм дроби заменить разностью логарифмов, что в дальнейшем позволяет привести подобные слагаемые и тем самым упростить выражение: . Преобразование тригонометрических выражений может потребовать заменить отношение синуса к косинусу одного и того же угла тангенсом. Также возможно придется от половинного аргумента по соответствующим формулам переходить к целому аргументу, тем самым избавляясь от аргумента-дроби, например, .

Применение свойств корней, степеней и т.п. к преобразованию выражений более подробно освещено в статьях:

  • Преобразование иррациональных выражений с использованием свойств корней ,
  • Преобразование выражений с использованием свойств степеней ,
  • Преобразование логарифмических выражений с использованием свойств логарифмов ,
  • Преобразование тригонометрических выражений .

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Определение и примеры рациональных выражений

Определение 1

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x - 5 , - 3 · a · b 3 - 1 c 2 + 4 a 2 + b 2 1 + a: (1 - b) , (x + 1) · (y - 2) x 5 - 5 · x · y · 2 - 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями.Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Пример 1

Преобразовать рациональное выражение 3 · x x · y - 1 - 2 · x x · y - 1 .

Решение

Видно, что такое рациональное выражение – это разность 3 · x x · y - 1 и 2 · x x · y - 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 · 3 - 2 = x x · y - 1

Ответ: 3 · x x · y - 1 - 2 · x x · y - 1 = x x · y - 1 .

Пример 2

Выполнить преобразование 2 · x · y 4 · (- 4) · x 2: (3 · x - x) .

Решение

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = 2 · x · y 4 · (- 4) · x 2: 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · (- 4) · x 2: 2 · x = 2 · x · y 4 · (- 4) · x 2: 2: x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · (- 4) · x 2: 2: x = (2 · (- 4) : 2) · (x · x 2: x) · y 4 = - 4 · x 2 · y 4

Ответ: 2 · x · y 4 · (- 4) · x 2: (3 · x - x) = - 4 · x 2 · y 4 .

Пример 3

Преобразовать выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 .

Решение

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида (x · (x + 3) - (3 · x + 1)) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x 2 + 3 · x - 3 · x - 1 1 2 · 4 · x + 2 = x 2 - 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 - 1 2 · x + 2 = (x - 1) · (x + 1) 2 · (x + 1) = x - 1 2

Ответ : x · (x + 3) - (3 · x + 1) 1 2 · x · 4 + 2 = x - 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Пример 4

Представить в виде рациональной дроби a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a .

Решение

Данное выражение можно представить в виде a 2 - 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 - 25 a + 3 · 1 a 2 + 5 · a = a - 5 · (a + 5) a + 3 · 1 a · (a + 5) = a - 5 · (a + 5) · 1 (a + 3) · a · (a + 5) = a - 5 (a + 3) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a - 3 - a - 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a - 3 - a - 5 a + 3 · a = a + 5 · a + 3 a · (a - 3) · (a + 3) - (a - 5) · (a - 3) (a + 3) · a · (a - 3) = = a + 5 · a + 3 - (a - 5) · (a - 3) a · (a - 3) · (a + 3) = a 2 + 3 · a + 5 · a + 15 - (a 2 - 3 · a - 5 · a + 15) a · (a - 3) · (a + 3) = = 16 · a a · (a - 3) · (a + 3) = 16 a - 3 · (a + 3) = 16 a 2 - 9

После чего очевидно, что исходное выражение примет вид 16 a 2 - 9 .

Ответ: a + 5 a · (a - 3) - a 2 - 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 - 9 .

Пример 5

Представить x x + 1 + 1 2 · x - 1 1 + x в виде рациональной дроби.

Решение

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x - 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · (x + 1) 1 · (x + 1) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 x + 1 2 · x - 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1: 2 · x - 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1: 2 · x - 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x - 1 = 2 · x + 1 · (1 + x) (x + 1) · (2 · x - 1) = 2 · x + 1 2 · x - 1

Можно решить это иначе.

Вместо деления на 2 · x - 1 1 + x производим умножение на обратную ей 1 + x 2 · x - 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x - 1 1 + x = x x + 1 + 1: 2 · x - 1 1 + x = x x + 1 + 1 · 1 + x 2 · x - 1 = = x x + 1 · 1 + x 2 · x - 1 + 1 · 1 + x 2 · x - 1 = x · 1 + x (x + 1) · 2 · x - 1 + 1 + x 2 · x - 1 = = x 2 · x - 1 + 1 + x 2 · x - 1 = x + 1 + x 2 · x - 1 = 2 · x + 1 2 · x - 1

Ответ: x x + 1 + 1 2 · x - 1 1 + x = 2 · x + 1 2 · x - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Семья